Table VI. Physical Properties of I

No.	R ^a	Solvent ^b	Mp, °C	Yield, %	Formula ^c
7	4-CH ₃ C ₆ H ₄ CH ₂ CH ₂	Α	241-244	11	C ₁₉ H ₁₆ ClNO ₃
8	<i>ѻ</i> -С ₆ Ҥ҆ ₆ С ₆ Ҥ҆ ₄ СҤ๋ ₂ СҤ҅ ₂	В	274-277	28	$C_{24}H_{18}CINO_{3}$
9	<i>m</i> -Č ₆ H ₅ Č ₆ H ₄ CH ₂ CH ₂	В	270-272	75	C ₂₄ H ₁₈ CINO ₃
10	p-C,H,C,H,C,L,	В	272 dec	73	C ₂₄ H ₁₈ ClNO ₃
11	α-C ₁₀ H ₇ CH=CH	В	284 dec	36	$C_{2}H_{1}CINO_{2} \cdot 0.5C_{2}H_{2}O_{2}$
12	α -C ₁₀ H ₂ CH ₂ CH ₂	С	255-256 dec	78	C, H, CINO, C, H, OH
13	β-C ₁₀ H ₇ CH ₂ CH ₂	В	274-276 dec	41	C,,H,CINO,
14	3,4-CH ₂ O ₂ C ₆ H ₃ CH=CH	В	294 dec	62	C ₁₉ H ₁₂ ClNO ₅
15	3,4-CH ₂ O ₂ C ₆ H ₃ CH ₂ -CH ₂	В	260-261 dec	69	$C_{19}H_{14}ClNO_{5}$
16	3-FC ₆ H ₄ CH ₂ CH ₂	В	264-265	74	C ₁₈ H ₁₃ CIFNŎ ₃
17	3-CIC ₆ H ₄ CH ₂ CH ₂	В	270-271 dec	30	C ₁₈ H ₁₃ Cl ₂ NO ₃
18	4-CIC [°] ₆ H ² ₄ CH ² ₂ CH ² ₂	В	257-258 dec	47	$C_{18}H_{13}Cl_2NO_3$
19	2,6-Cl ₂ C ₆ H ₃ CH=CH	В	286-289 dec	54	C ₁₈ H ₁₀ Cl ₃ NO ₃
2 0	2,6-Cl ₂ C ₆ H ₃ CH ₂ CH ₂	С	259-262	41	$C_{18}H_{12}Cl_{3}NO_{3}$
21	2,5-Cl ₂ C ₆ H ₃ CH ₂ CH ₂	В	265-266 dec	45	$C_{18}H_{12}Cl_{3}NO_{3}$
2 2	2,4-Cl ₂ C ₆ H ₃ CH ₂ CH ₂	В	265-266 dec	51	$C_{18}H_{12}Cl_{3}NO_{3}$
2 3	3,4-Cl ₂ C ₆ H ₃ CH ₂ CH ₂	В	274-275 dec	54	$C_{18}H_{12}Cl_{3}NO_{3}$

^{*a*}Prepared by previously described method, ref 2. ^{*b*}Recrystallization solvents: A, $C_{6}H_{5}N$ -hexane; B, 2-methoxyethanol; C, EtOH. ^{*c*}Analyzed for C, H, N.

of these nitro compounds to the anilinomethylenemalonates, the ethyl 4-hydroxyquinoline-3-carboxylates, and the 4-hydroxyquinoline-3-carboxylic acids (Tables IV, V, and VI, respectively) has also been previously reported.^{2,4}

2-Phenylbenzyl Triphenylphosphonium Chloride (24). A mixt of 5.0 g (25.2 mmoles) of 2-phenylbenzoic acid and 1.5 g of LAH in 200 ml of THF was refluxed for 4 hr. The excess LAH was decompd by adding in order: 1.5 ml of H₂O, 1.5 ml of 15% NaOH, and 4.5 ml of H₂O. The crystalline salts were filtered off, and the THF was concentrated to an almost colorless oil of 4.9 g (105%) of 2-phenylbenzyl alcohol. To this alcohol was added 6 ml (10 g, 84 mmoles) of SOCl₂ and 20 ml of C₆H₆. The reaction mixt was placed on the steam bath for 15 min then spin evaporated. More benzene was added, and the mixt was spin evaporated again. Then 100 ml of toluene contg 6.9 g (25 mmoles) of P(C₆H₆)₉ was added, and the reaction refluxed for 18 hr to give a first crop of 5.53 g (47%), mp 269-275°. Refluxing the mother liquors for an addl 24 hr gave 1.56 g (13%), mp 275-278°. Anal. (C₃₁H₂₆CIP) C, H. In like manner a third crop of 0.93 g, mp 275-278°, was collected for a total of 8.02 g (68%) of useable material.

trans-3-Nitro-4,2',5'-trichlorostilbene (38) (Method A). To a mixt of 12.5 g (25 mmoles) of 26 and 4.6 g (25 mmoles) of 4-chloro-3-nitrobenzaldehyde in 50 ml of DMF was added 3.2 g (25 mmoles) of diazobicyclononane, and the mixt was stirred at room temp for 18 hr. The soln was poured into 50 ml of H_2O and stirred until all the oil had solidified. This yellow semisolid was collected and recrystallized from EtOH to give 1.83 g (22%) of yellow crystals, mp 157-158°. Anal. ($C_{14}H_8Cl_9NO_2$) C, H, N. The mother liquors (EtOH) were concentrated to an oil, dissolved in benzene, and placed on 100 g of silica. The silica was eluted with benzene until the tlc indicated no more product was present. The benzene was concentrated to 6.1 g of oily cis-trans mixt that was suitable for further transformations, total yield 7.9 g (96%).

References

- (1) B. R. Baker and R. E. Gibson, J. Med. Chem., 15, 639 (1972) (paper 193).
- (2) B. R. Baker and R. R. Bramhall, *ibid.*, 15, 230 (1972) (paper 189).
- (3) B. R. Baker and R. R. Bramhall, *ibid.*, 15, 235 (1972) (paper 191).
- (4) B. R. Baker and R. R. Bramhall, *ibid.*, 15, 237 (1972) (paper 192).
- (5) C. E. Griffin and M. Gordon, J. Organomet. Chem., 3, 414 (1965).
- (6) W. P. Keaveney and D. G. Hennessey, J. Org. Chem., 27, 1057 (1962).

Irreversible Enzyme Inhibitors. 195.^{†,1} Inhibitors of Thymidine Kinase from Walker 256 Carcinoma Derived from Thymidine 5'-Acetate

B. R. Baker[‡] and John P. Neenan*

Department of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106. Received March 10, 1972

Seventeen derivatives of thymidine 5'-carbamate and 27 5'-esters of thymidine were synthesized and investigated as inhibitors of thymidine kinase from Walker 256 rat tumor. Derivatives of thymidine 5'- acetate were good inhibitors of the enzyme. The inhibition displayed was attributed in part to an interaction of the inhibitor with an enzymic hydrophobic region adjacent to the active site. The binding exhibited by thymidine 5'- α -thionaphthyloxyacetate and thymidine 5'-p-benzyloxyphenoxyacetate was approximately equal to that of thymidine. These compounds could serve as prototypes in the design of more potent inhibitors.

There are two metabolic pathways to the intracellular thymidylate needed for DNA synthesis. The first is the thymidylate synthetase-dihydrofolate reductase pathway using deoxyuridylate and the second is the scavenge pathway from thymidine kinase. A blockade of dihydrofolate reductase, in effect, prevents formation of thymidylate from deoxyuridylate and has been extensively studied in this laboratory.²⁻⁵

Some studies on inhibition of thymidine kinase from *Escherichia coli* B were reported earlier from this laboratory;^{6,7} apparently both the 3'- and 5'-hydroxyls of thymidine were binding points to the enzyme. No bulk tolerance for the large substituents needed for the design of active-site-directed irreversible inhibitors could be found that

[†]This work was generously supported by Grant CA08695 from the National Cancer Institute, U. S. Public Health Service. [‡]Deceased.

gave less than a 50-fold loss in binding;⁶ similarly, 1-substituted uracils were not good inhibitors of the enzyme.⁷

Later studies on guanine deaminase showed that a loss of a binding point on the substrate could be tolerated if the substituent causing the loss could enhance binding by some other interaction such as hydrophobic bonding; thus, the 21fold loss in binding caused by 9-methylation of guanine could be recouped by the hydrophobic bonding of a 9phenyl substituent.^{8,9} We therefore investigated 5'-acyl derivatives of thymidine for inhibition of thymidine kinase. The loss in binding by substitution on the 5'-hydroxyl was regained by use of an acyl group that gave a hydrocarbon interaction with the enzyme. A series of thymidine 5'carbamates and 5'-esters of thymidine was synthesized and tested as inhibitors of Walker 256 thymidine kinase. The results are the subject of this paper.

Enzyme Results. Thymidine kinase activity was found in an extract from Walker 256 rat tumor when assayed with 25 μM [¹⁴C]thymidine. At a concentration of 300 μM , no inhibition was observed with a number of 1-alkyl-,^{7,10-12} 1-aralkyl-,^{7,12} or 1-hydroxyalkyluracils.⁷ Similarly, no inhibition was observed at 300 μM with a number of 5-substituted or 6-substituted uracils.¹³⁻¹⁷ Therefore, attention was directed to derivatives of thymidine (Table I).

The inhibition of thymidine kinase from Walker carcinoma shown by two 5-halo-2'-deoxyuridines, thymidine, and 2'deoxyuridine (1-4) was in general agreement with the finding of Bresnick and Thompson.¹⁸ Thus, 5-bromo-2'-deoxy-uridine was most effective and 2'-deoxyuridine was least effective. These results indicate that the 5-methyl of thymidine might be a binding point to the kinase since bromo is nearly isosteric with methyl.

The losses in binding observed with the 3-alkylthymidines (5-7) are similar to those encountered with thymidine kinase from E. coli B.⁶

Compound 8, 5'-deoxythymidine, suffered a 6-fold loss in binding compared with thymidine. Since 8 possesses no hydrogen-bonding capability at the 5' position it is conceivable that such an interaction might contribute to the binding of thymidine.

The 32-fold loss in binding observed with 5'-O-carbamoylthymidine (9) is some indication of the amount of binding that must be regained by a thymidine 5'-carbamate in order to have good inhibition. This loss was not completely recovered by any of the carbamates (10-26). However, 5'-O-(N-phenethylcarbamoyl)thymidine (12) did give some inhibition of the kinase.

Compound 18, 5'-O-(N-n-propylcarbamoyl)thymidine, did not bind, even though the enzyme should possess more bulk tolerance for it than for 12. Therefore, it is possible that the phenyl of 12 binds to the enzyme more strongly than its $(CH_2)_2$ bridge. When substituted phenethylcarbamates (21-26) failed to inhibit at 500 μ M, the carbamate series was abandoned and a series of 5'-esters of thymidine (27-54) was developed.

Significant inhibition of the kinase was observed with all 5'-aryloxyacetates and 5'-thioaryloxyacetates tested. The remaining esters in the series were ineffective.

Preliminary studies involved compounds 27-33. Of these esters only thymidine 5'-phenoxyacetate (31) gave substantial inhibition.

Two other observations are noteworthy. Thymidine 5'- β phenylpropionate (29) was ineffective. However, thymidine 5'-thiophenoxyacetate (44) was 3 times as potent as compound 31. Compounds 29, 31, and 44 differ only in the linkage at the phenyl moiety. The marked variance in

Table I. Inhibition^a of Thymidine Kinase from Walker Carcinoma by I $(R_1 = R'CH_2)$

by I ($R_1 = R'CH_2$	· · · · · ·				
	$ \begin{array}{c} $					
No.	R	R'	Ι ₅₀ , ^b μΜ			
1	Н	ОН	160			
2	5-Me	ОН	12			
3	5-F	OH	87			
4 5 ^c	5-Br 3-(<i>n</i> -C ₅ H ₁₁)-5-Me	OH OH	9 140			
6 ^c	3-C ₆ H ₅ CH ₂ -5-Me	OH	170			
7 ^c	$3-C_{6}H_{5}(CH_{2})_{3}-5-Me$	ОН	160			
8 ^c 9 ^d	5-Me	H	160			
9. 10	5-Me 5-Me	NH ₂ CO ₂ C ₆ H ₅ NHCO ₂	800 >500			
11	5-Me	C ₆ H ₅ CH ₂ NHCO ₂	>500			
1 2 ^c	5-Me	$C_6H_5(CH_2)_2NHCO_2$	370			
13	5-Me	$C_6H_5(CH_2)_3NHCO_2$	>300			
14 15	5-Me 5-Me	$C_6H_5(CH_2)_4NHCO_2$ $C_6H_5O(CH_2)_2NHCO_2$	>500 >500			
16	5-Me	$C_6H_5O(CH_2)_3NHCO_2$	>500			
17	5-Me	C ₆ H ₅ O(CH ₂) ₄ NHCO ₂	>500			
18	5-Me	$n-C_{3}H_{7}NHCO_{2}$	>500			
19 20	5-Me 5-Me	s-C ₄ H ₉ NHCO ₂ i-C ₅ H ₁₁ NHCO ₂	>500 >500			
2 1	5-Me	o-ClC ₆ H ₄ (CH ₂) ₂ NHCO ₂	>500			
22	5-Me	m-ClC ₆ H ₄ (CH ₂) ₂ NHCO ₂	>500			
23 24	5-Me	$p-ClC_6H_4(CH_2)_2NHCO_2$	>500			
25	5-Me 5-Me	o-MeOC ₆ H ₄ (CH ₂) ₂ NHCO ₂ m-MeOC ₆ H ₄ (CH ₂) ₂ NHCO ₂	>500 >500			
26	5-Me	p-MeOC ₆ H ₄ (CH ₂) ₂ NHCO ₂	>500			
2 7	5-Me	C ₆ H ₅ CO ₂	>500			
28 29	5-Me 5-Me	$C_6H_5CH_2CO_2$ $C_6H_4(CH_2)_2CO_2$	>500 >500			
30	5-Me	$C_6H_4(CH_2)_2CO_2$ $C_6H_5(CH_2)_3CO_2$	>500			
3 1 ^e	5-Me	C ₆ H ₄ OCH ₂ CO ₂	147			
32	5-Me	$C_6H_5O(CH_2)_2CO_2$	890			
33 34	5-Me 5-Me	C ₆ H ₅ O(CH ₂) ₃ CO ₂ o-ClC ₆ H ₄ OCH ₂ CO ₂	>500 220			
35	5-Me	m-ClC ₆ H ₄ OCH ₂ CO ₂	73			
36	5-Me	p-ClC ₆ H ₄ OCH ₂ CO ₂	90			
37 38	5-Me 5-Me	2,4-Cl ₂ C ₆ H ₃ OCH ₂ CO ₂ 3,4-Cl ₂ C ₆ H ₃ OCH ₂ CO ₂	85 80			
39	5-Me	3,5-Cl ₂ C ₆ H ₃ OCH ₂ CO ₂	68			
40	5-Me	m-CF ₃ C ₆ H ₄ OCH ₂ CO ₂	110			
41 42	5-Me	p-CH ₃ OC ₄ H ₄ OCH ₂ CO ₂	91 77			
42 43	5-Me 5-Me	p - n - $C_4H_9OC_6H_4OCH_2CO_2$ 4-Cl-3,5-Me ₂ C ₆ H ₂ OCH ₂ CO ₂	58			
44	5-Me	C ₆ H ₅ SCH ₂ CO ₂	55			
45	5-Me	p-BrC ₆ H ₄ SCH ₂ CO ₂	42			
46 47	5-Me 5-Me	3,4-Cl ₂ C ₆ H ₃ SCH ₂ CO ₂ α-C ₁₀ H ₇ OCH ₂ CO ₂	40 60			
48	5-Me	β -C ₁₀ H ₇ OCH ₂ CO ₂	62			
49	5-Me	α -C ₁₀ H ₇ SCH ₂ CO ₂	20			
50	5-Me	β -C ₁₀ H ₇ SCH ₂ CO ₂	38			
51 52	5-Me 5-Me	m-C ₆ H ₅ OC ₆ H ₄ OCH ₂ CO ₂ p-C ₆ H ₅ OC ₆ H ₄ OCH ₂ CO ₂	38 49			
5 3	5-Me	m-C ₆ H ₅ CH ₂ OC ₆ H ₄ OCH ₂ CO ₂	30			
54	5-Me	p-C ₆ H ₅ CH ₂ OC ₆ H ₄ OCH ₂ CO ₂	19			

^aThe technical assistance of Julie Beardslee, Maureen Baker, Nancy Middleton, Janet Wood, and Pauline Minton is acknowledged. ${}^{b}I_{so}$ = concentration of inhibitor giving 50% inhibition when assayed with 25 μ M [14C]thymidine as described in the Experimental Section. ^cSee ref 6 for synthesis. ^dSee ref 20 for synthesis. ^eThis compound was subjected to the assay conditions in the absence of enzyme to demonstrate that it did not suffer hydrolysis to thymidine. No thymidine was detected on tlc when an aliquot contg approx 90 μ g of the compound was spotted.

effectiveness among these three compounds cannot be accounted for solely on the basis of hydrophobicity since 31 has the more polar OCH_2 bridge compared with the less polar $(CH_2)_2$ bridge of 29. There are at least two rationalizations that are supported by the data in Table I. First, more torsional strain might be encountered in rotation of the phenyl about the CH_2 - CH_2 bond of 29 than in rotation about the O- CH_2 bond of 31 or the S- CH_2 bond of 44. Secondly, since a methylene is less polarizable than an oxygen, which is in turn less polarizable than a sulfur, the observed trend could result from greater binding energy contributions by Van der Waal's interactions for 31 and 44 than for 29.

Compounds 34-46 include phenoxy- and thiophenoxyacetates that have small substituents attached to the phenyl moiety. With the exception of the methoxy of compound 41, these substituents are all hydrophobic. Among these compounds, the best phenoxyacetate was compound 43, which was about 3-fold more effective than 31. As the number and hydrophobicity of these substituents was increased, a slight trend toward greater inhibition was noted. The observed differences in binding are too small to warrant discussion. The results obtained with these compounds show that the enzyme possesses ample bulk tolerance to accommodate small ring substituents.

The larger, more hydrophobic compounds (47-54), were good inhibitors. In particular, the α -thionaphthyloxyace-tate (49) and the *p*-benzyloxyphenoxyacetate (54) were about as effective in binding to the kinase as thymidine.

It has not escaped our attention that 5'-esters of nucleosides might be hydrolyzed by nonspecific esterases *in vivo* before they could reach the target enzymes in cancer cells. However, a recent report by Wechter, *et al.*, ¹⁹ on 5'-esters of 1- β -D-arabinofuranosylcytosine states that some of them are orally active. Perhaps intracellular deposition of 5'-esters of thymidine can occur before extensive hydrolysis is suffered.

Efforts are underway to obtain more potent reversible inhibitors as well as candidate irreversible inhibitors, by use of these thymidine 5'-acetates as prototypes.

Chemistry. The displacement of phenol from 5'-carbophenoxythymidine²⁰ with phenethylamine to afford 12 has been reported.⁶ Compounds 11 and 13-26 were pre-

Table II. Phy	vsical Properties of	$I(R = 5-Me; R_1)$	$= R' NHCOCH_2$
---------------	----------------------	--------------------	-----------------

pared in a similar manner from the same carbonate. This reaction failed when aniline was used in an effort to prepare compound **10**. It was obtained by displacement of *p*-nitrophenol from *p*-nitrophenyl thymidine 5'-carbonate.²¹

Agarwal and Dhar have discussed the selective esterification of unblocked thymidine with carboxylic acid chlorides in MeCN containing 2.5 equiv of pyridine.²² 5'-Esters of thymidine have also been prepared from an acid chloride in neat pyridine.^{23,24} Pfitzner and Moffatt isolated 5'-*O*-*p*nitrobenzoylthymidine by nonchromatographic methods, and, by subsequent chromatography, obtained some 3',5'di-*O*-*p*-nitrobenzoylthymidine and a small amount of 3'-*Op*-nitrobenzoylthymidine.²⁴

The reaction of acetic anhydride and thymidine, from which Gilham and Khorana isolated 5'-acetate and 3',5'-diacetate,²⁵ was repeated in this laboratory and monitored on tlc. A trace product, which moved between 5'-acetate and 3',5'-diacetate, had an $R_{\rm f}$ identical with that of authentic thymidine 3'-acetate.²⁶ In this way, 5'-esters of thymidine can be distinguished from their less polar 3'-isomers.

Compounds 27, 29-31, 33, and 34 were prepared from the appropriate acid chlorides in neat pyridine. This method failed to give compound 28 from phenylacetyl chloride. Thus, in repeated attempts we observed several spots on tlc and were unable to isolate the desired product. Fieser and Fieser have mentioned the sensitivity of phenylacetyl chloride.²⁷ Similarly, we were unable to obtain 32 from β -phenoxypropionyl chloride. In our hands, this acid chloride was very unstable, and Powell has discussed its mode of decomposition.²⁸

Compounds 28 and 32 as well as 35-54 were prepared by coupling the appropriate carboxylic acid with thymidine in the presence of N,N'-dicyclohexylcarbodiimide (DCC). As monitored on tlc, the DCC coupling procedure gives essentially the same result as the acid chloride reaction.

Experimental Section

Melting points were taken in capillary tubes on a Mel-Temp block and are uncorrected. Each analytical sample had an ir spectrum compatible with its structure and moved as one spot on tlc on Brinkmann silica gel GF with chloroform-EtOH (4:1, v/v).

5'-O-(N-Phenylcarbamoyl)thymidine (10). Method A. To a

No.	R'	Method	Mp, °C	% yield ^a	Formula ^b
10	C ₆ H ₅	Α	208-210	5 ^c	C ₁₇ H ₁₉ N ₃ O ₆
11	C ₆ H ₅ CH ₂	В	215-216	40^d	$C_{18}H_{21}N_{3}O_{6}$
13	$C_6H_5(CH_2)_3$	В	185-186	30 ^d	$C_{20}H_{25}N_{3}O_{6}$
14	$C_6H_5(CH_2)_4$	В	168-169	37 ^d	C ₂₁ H ₂₇ N ₃ O ₆
15	$C_6H_5O(CH_2)_2$	C ^e	189-191	18^{f}	$C_{19}H_{23}N_{3}O_{7}$
16	$C_6H_5O(CH_2)_3$	Cg	172-173	43 <i>1</i>	$C_{20}H_{25}N_{3}O_{7}$
17	$C_6H_5O(CH_2)_4$	\mathbf{B}^{h}	176-177	42^{f}	C ₂₁ H ₂₇ N ₃ O ₇
18	n-C ₃ H ₇	В	214-215	32 ^c	C14H21N3O6
19	sec-C ₄ H ₉	В	166-168	28^d	$C_{15}H_{23}N_{3}O_{6}$
20	<i>i</i> -C ₅ H ₁₁	В	172-173	39 ^d	$C_{16}H_{25}N_{3}O_{6}$
21	o-ClC ₆ H ₄ (CH ₂) ₂	В	129-131	36 ⁱ	$C_{19}H_{22}CIN_{3}O_{6}$
2 2	m-ClC ₆ H ₄ (CH ₂) ₂	C_{-}^{\prime}	149-150	21^{f}	$C_{19}H_{22}ClN_3O_6$
23	$p-\text{ClC}_6\text{H}_4(\text{CH}_2)_2$	C^{k}	188-191	32^{f}	$C_{1}H_{2}CIN_{3}O_{6}$
24	$o-MeOC_6H_4(CH_2)_2$	\mathbf{B}^{l}	137-139	15^{f}	$C_{20}H_{25}N_{3}O_{7}$
25	m-MeOC ₆ H ₄ (CH ₂) ₂	\mathbf{B}^{l}	120-121	30^d	$C_{20}H_{25}N_{3}O_{7}$
26	p-MeOC ₆ H ₄ (CH ₂) ₂	C^{k}	178-180	23 ^m	$C_{20}H_{25}N_{3}O_{7}$

^aYield of analytically pure material, and yield is minimum. ^bAnalyzed for C, H, and N within 0.4% of theoretical. ^cRecrystallized from EtOH contg a little water. ^dRecrystallized from abs EtOH. ^eFor starting 2-phenoxypropyl amine hydrochloride see ref 32. ^JRecrystallized from EtOH contg a little petroleum ether (bp 65-110°). ^gFrom 3-phenoxypropylamine via 3-phenoxypropyl bromide and potassium phthalimide in DMF followed by hydrazinolysis. For hydrazinolysis method used see ref 33. For original Gabriel synthesis of this amine see ref 34. ^hFor starting 4-phenoxybutylamine see ref 35. ⁱRecrystallized from n-PrOH contg a little petroleum ether (bp 65-110°). ^jFrom m-chloro2phenethylamine hydrochloride via catalytic red n of m-chlorophenylacetonitrile with PtO₂ in MeOH and HCl by the general method of Buck.³⁶ See ref 37. ^kFor the starting phenethylamine hydrochloride see ref 36. ^JFrom the distd phenethylamine via the phenylacetonitrile by modification of the general method of Buck.³⁶ AcOH was substituted for alcohol and HCl. See ref 38. ^mRecrystallized from n-BuOH.

Table III. Physical	Properties of I (R =	$= 5 \text{-Me}; R_1 = R'CO_2CH_2$	2)
---------------------	----------------------	------------------------------------	----

No.	R'	Method	Mp, °C	% yield ^{a, b}	Formula ^c
27	C ₆ H ₅	D^d	171-172	41 ^e	C ₁₇ H ₁₈ N ₂ O ₆
28	C ₆ H ₅ CH ₂	\mathbf{E}^{f}	139-140	8	$C_{18}H_{20}N_{2}O_{6}$
2 9	$C_6H_5(CH_2)_2$	D^{d}	147-1 5 0	30 ^g	C10H22N2O2
30	$C_6H_5(CH_2)_3$	\mathbf{D}^{h}	122-123	10	$C_{20}H_{24}N_{2}O_{6}$
31	C ₆ H ₅ OCH ₂	D^d	134-135	10	$C_{18}H_{20}N_{2}O_{7}$
3 2	$C_6H_5O(CH_2)_2$	\mathbf{E}^{f}	152-153	8	$C_{19}H_{22}N_{2}O_{7}$
3 3	$C_6H_5O(CH_2)_3$	$\mathbf{D}^{\boldsymbol{h}}$	138-139	12	$C_{20}H_{24}N_{2}O_{7}$
34	o-ClC ₆ H ₄ OCH ₂	D^{h}	143-144	12	$C_{18}H_{19}CIN_2O_7$
35	m-ClC ₆ H ₄ OCH ₂	\mathbf{E}^{i}	158-159	9	$C_{18}H_{19}CIN_2O_7$
36	p-ClC ₆ H ₄ OCH ₂	\mathbf{E}^{f}	198-199	11	$C_{18}H_{19}CIN_2O_7$
37	2,4-Cl ₂ C ₆ H ₃ OCH ₂	$\overline{\mathbf{E}}^{f}$	198-200	11	C18H18C12N2O7
38	3,4-Cl ₂ C ₆ H ₃ OCH ₂	\mathbf{E}^{f} \mathbf{E}^{i}	190-191	14	$C_{18}H_{18}Cl_2N_2O_7$
39	3,5-Cl ₂ C ₆ H ₃ OCH ₂	E^{i}	179-180	5	$C_{18}H_{18}Cl_2N_2O_7$
40	m-CF ₃ C ₆ H ₄ OCH ₂	\mathbf{E}^{i}	166-167	3	C ₁₉ H ₁₉ F ₃ N ₂ O ₇
41	p-CH ₃ OC ₆ H ₄ OCH ₂	\mathbf{E}^{f} \mathbf{E}^{i}	171-172	8	$C_{19}H_{22}N_{2}O_{8}$
42	p-n-C4H9OC6H4OCH2	\mathbf{E}^{i}	137-139	4	C ₂₂ H ₂₈ N ₂ O ₈
43	4-Cl-3,5-Me ₂ C ₆ H ₂ OCH ₂	\mathbf{E}^{i}	204-206	6	C ₂₀ H ₂₃ CIN ₂ O ₇
44	C ₆ H ₅ SCH ₂	\mathbf{E}^{i}	121-122	8	$C_{18}H_{20}N_{2}O_{6}S$
45	p-BrC ₆ H ₄ SCH ₂	\mathbf{E}^{i}	169-171	11	C ₁₈ H ₁₉ BrN ₂ O ₆ S
46	3,4-Cl ₂ C ₆ H ₄ SCH ₂	\mathbf{E}^{i}	168-170	16	C ₁₈ H ₁₈ Cl ₂ N ₂ O ₆ S
47	α -C ₁₀ H ₇ OCH ₂	\mathbf{E}^{i} \mathbf{E}^{i} \mathbf{E}^{i}	170-171	12^e	$C_{22}H_{22}N_{2}O_{7}$
48	β -C ₁₀ H ₇ OCH ₂	E ^j	160-161	6	$C_{22}H_{22}N_{2}O_{7}$
49	α -C ₁₀ H ₇ SCH ₂	\mathbf{E}^{i}	123-125	9^k	$C_{22}H_{22}N_{2}O_{6}S$
50	β -C ₁₀ H ₇ SCH ₂	\mathbf{E}^{j} \mathbf{E}^{i} \mathbf{E}^{i} \mathbf{E}^{i}	166-167	20	C ₂₂ H ₂₂ N ₂ O ₆ S
5 1	m-C ₆ H ₅ OC ₆ H ₄ OCH ₂	\mathbf{E}^{i}	112-113	4^l	$C_{24}H_{24}N_{2}O_{8}$
52	p-C ₆ H ₅ OC ₆ H ₄ OCH ₂	\mathbf{E}^{i}	173-175	5	$C_{24}H_{24}N_{2}O_{8}$
53	m-C ₆ H ₅ OC ₂ H ₄ OCH ₂	\mathbf{E}^{i}	132-134	11	$C_{25}H_{26}N_{2}O_{8}$
54	<i>p</i> -C ₆ H ₅ CH ₂ OC ₆ H ₄ OCH ₂	\mathbf{E}^{i}	162-163	4	$C_{25}H_{26}N_{2}O_{8}$

^aYield of analytically pure material; yield is minimum. ^bRecrystallized from abs EtOH unless otherwise noted. ^cAnalyzed for C, H, and N within 0.4% of theoretical. ^aStarting acid chloride is commercially available. ^eRecrystallized from EtOH contg a little petroleum ether (bp 65-110°). ^fStarting carboxylic acid is commercially available. ^gRecrystallized from *n*-PrOH contg a little petroleum ether (bp 65-110°). ^hStarting acid chloride prepd *via* reaction of the carboxylic acid with neat refluxing SOCl₂, 1.25 equiv, for 5 hr, followed by removal of volatile materials *in vacuo*. The product was purified by vacuum distn and had a compatible ir spectrum. ^fStarting carboxylic acid prepd from the phenol and *tert*-butyl chloroacetate. See Table IV. ^fStarting carboxylic acid prepd from the commercial Na salt. ^kRecrystallized from EtOH contg a little water. ^lRecrystallized from *n*-PrOH.

Table IV. Physical Properties of Intermediates, RCH₂CO₂H, Prepared from tert-Butyl Chloroacetate

No. ^a	R	Solvent ^b	Mp, °C	Lit. mp,°C	% yield
35	m-ClC ₆ H ₄ O	A	108-111	110-111 ^c	40
39	3,5-Cl ₂ C ₆ H ₃ O	В	113-115	117.5-118.5 ^d	22
40	m-CF ₃ C ₆ H ₄ O	В	94-96	94.5-95.5 ^e	20
42	p-n-C ₄ H ₉ OC ₆ H ₄ O	С	114-115	112^{f}	13
43	4-C1-3,5-Me ₂ C ₆ H ₂ O	В	150-151	148-150 ^g	21
44	C₀H₅S			63.5 ^h	3 ⁱ
45	p-BrC ₆ H ₄ S	Α	115-117	118–119 ^j	10
46	3,4-Cl ₂ C ₆ H ₃ S	Α	75-78	71-72 ^k	6
4 7	α-C ₁₀ H ₇ O	С	190-194	193.5 ¹	29
49	$\alpha C_{10}H_{7}S$	В	106-107	107^{m}	33
50	$\alpha C_{10} H_7 S$ $\beta - C_{10} H_7 S$	В	92-93	92-93 ⁿ	15
51	m-C,H,OC,H,O	D	70-71	67 - 67. 4 <i>°</i>	33
52	p-C,H,OC,H,O	В	124-126	125 ^p	21
53	m-C ₆ H ₅ CH ₂ OC ₆ H ₄ O	С	117-118 ^q		50
54	p-C ₆ H ₅ CH ₂ OC ₆ H ₄ O	В	139-142	140 ^r	18

^aCompound numbers correspond to final thymidine 5'-acetate derivatives. See Tables I and III. ^bRecrystallization solvents: A, benzene; B, toluene; C, abs EtOH; D, petroleum ether (bp 65-110°). ^cSee ref 39. ^dSee ref 40. ^eSee ref 41. ^fSee ref 42. ^gSee ref 43. ^hSee ref 44. ⁱThiophenoxyacetic acid was difficult to isolate and was used without recrystallization. It had a compatible ir spectrum. ^jSee ref 45. ^kSee ref 46. ^lSee ref 47. ^mSee ref 48. ⁿSee ref 49. ^oSee ref 50. ^pSee ref 51. ^qm-Benzyloxyphenoxacetic acid is a new compound. See the Experimental Section. ^rSee ref 52.

stirred soln of 484 mg (2 mmoles) of thymidine in 25 ml of pyridine was added 403 mg (2 mmoles) of p-nitrophenylchloroformate. After 5 hr, 186 mg (2 mmoles) of freshly distd aniline was added. After an addnl 16 hr, the pyridine was removed *in vacuo*, and the residue was shaken with 30 ml of H₂O. The yellow aqueous layer was decanted off, and the residual red oil was triturated with ether to give a tan solid. Addn of petroleum ether (bp 65-110°) gave more solid. The solid was filtd off and recrystd from EtOH-H₂O after charcoal treatment to yield 33 mg (5%) of off-white crystals, mp 208-210°.

5'-O-(N-sec-Butylcarbamoyl)thymidine (19). Method B. A soln of 121 mg (0.33 mmole) of 5'-O-carbophenoxythymidine²⁰ and 73 mg (1 mmole) of sec-butylamine in 3 ml of THF was allowed to stand approx 3 days. The reaction was monitored on tlc. The THF

was removed *in vacuo*, and the residue triturated with ether to give a white solid that was filtd off and recrystd from EtOH to yield 30 mg (28%) of white powder, mp 166–168°.

For addnl compounds prepd by this method, see Table II. Method C was the same as method B except that triethylamine

was used to liberate the free amine from the HCl salt.

Thymidine 5'-Benzoate (27). Method D. To a chilled, stirred soln of 484 mg (2.0 mmoles) of thymidine in 7.5 ml of pyridine was added 0.25 ml (2.2 mmoles) of benzoyl chloride. The reaction mixt was protected from moisture. After 18 hr, the pyridine was removed *in vacuo*. The residue was triturated with approx 20 ml of H_2O , and the resultant solid was filtd off, dried, and recrystd from EtOH contg a little petroleum ether (bp 65-110°) to yield 278 mg (41%) of white

crystals, mp 171-172°. The product was homogeneous on tlc when 100 μg was spotted. $\$, ^{26}$

For addnl compounds prepd by this method see Table III.

Thymidine 5'-(2,4-Dichlorophenoxy)acetate (37). Method E. To a stirred soln of 484 mg (2.0 mmoles) of thymidine and 442 mg (2.0 mmoles) of 2,4-dichlorophenoxyacetic acid in 4 ml of DMF was added 413 mg (2.0 mmoles) of N_iN -dicyclohexylcarbodiimide. The reaction mixt was protected from moisture. After 24 hr, the ppt was filtd off. The DMF was removed by vacuum distn over warm H₂O. The residue was triturated with H₂O, and the resultant solid was filtd off and dried. The crude product was leached with hot toluene, cooled, filtd off, and recrystd from EtOH to yield 100 mg (11%) of white powder, mp 198-200°. The product was homogeneous on tlc when 100 µg was spotted. $\,26

m-Benzyloxyphenoxyacetic Acid. To a stirred soln of 4.9 g (25 mmoles) of *m*-benzyloxyphenol²⁹ in 15 ml of DMF in the presence of 3.8 g (27.5 mmoles) of K_2CO_3 was added 3.8 g (25 mmoles) of *tert*-butyl chloroacetate. The mixt was stirred overnight at 70°, then poured into 300 ml of H₂O, extd 2 × 100 ml of EtOAc, and dried over MgSO₄, and the solvent removed *in vacuo*. The residue was dissolved in 25 ml of toluene, and 100 mg of *p*-toluenesulfonic acid was added. The mixt was refluxed 12 hr, then chilled to give crystals, and recrystd from EtOH to give 3.23 g (50%) of white powder, mp 117-118°. An nmr spectrum was compatible with the structure.[#] Anal. (C₁₈H₁₄O₄) C, H.

For addnl carboxylic acids prepd by this method see Table IV.

Preparation of Enzyme and Assay Method. The enzyme prepn was a modification of the method of Bresnick and Thompson.¹ A mixt of 30 g of tissue and 50 ml of 0.05 M cold Tris (pH 7.4) was homogenized in a precooled head of a Waring blender for 2 min, and the resultant homogenate was centrifuged at 20,000 rpm for 20 min. To the crude supernatant was added 4.3 ml of 5% streptomycin per 73 ml of extract. The mixt was stirred in an ice bath for 10 min and then centrifuged at 20,000 rpm for 10 min. To the supernatant was slowly added 277 g of $(NH_4)_2SO_4$ per liter of extract, and the mixt was stirred in an ice bath to dissolve the $(NH_4)_2SO_4$ and then centrifuged at 20,000 rpm for 10 min. The resultant 0-45% (NH₂)₂SO₄ ppt fraction was resuspended in 30 ml of cold Tris (pH 7.4) and could be frozen for storage in 2-ml aliquots. The 0-45% (NH₄)₂SO₄ fraction was adjusted to pH 4.5 with 1 M AcOH and centrifuged at 20,000 rpm for 10 min. The supernatant was returned to pH 7.4 with 1 M KOH.

Thymidine kinase activity was measured by modification of the DEAE-cellulose disk method described by Bollum and Potter³⁰ and by Breitman.³¹ The assay was run in the presence of 10 vol % DMSO, and inhibitors were added in this solvent. The reaction mixt included 40 vol % enzyme extract; 0.05 *M* Tris (pH 8.0); 5 mM ATP; 5 mM MgCl₂; and 25 μ M thymidine contg [¹⁴C]thymidine. The total vol of the mixt was 0.1 ml.

After 30 min at room temp, the reaction mixt was spotted on a 16-mm DEAE-cellulose disk. Each disk was washed three times with 1 mM ammonium formate and once with abs EtOH, dried under an ir lamp, immersed in a toluene-phosphor mixt, and counted in a Packard Tri-Carb liquid scintillation spectrometer.

References

- B. R. Baker and Ray Bramhall, J. Med. Chem., 15, 937 (1972) (paper 194).
- (2) B. R. Baker, "Design of Active-Site-Directed Irreversible
- Enzyme Inhibitors," Wiley, New York, N. Y., 1967, Chapter X. (3) B. R. Baker, Ann. N. Y. Acad. Sci., 186, 214 (1971).
- (4) B. R. Baker, Annu. Rev. Pharmacol., 10, 35 (1970).
- (5) B. R. Baker, Accounts Chem. Res., 2, 129 (1969).
- (6) B. R. Baker, T. J. Schwan, and D. V. Santi, J. Med. Chem., 9, 66 (1966).

- (7) B. R. Baker and T. J. Schwan, ibid., 9, 73 (1966).
- (8) See ref 2, pp 101-106.
- (9) B. R. Baker and W. F. Wood, J. Med. Chem., 11, 644 (1968).
- (10) B. R. Baker and M. Kawazu, *ibid.*, 10, 302 (1967).
- (11) B. R. Baker, M. Kawazu, D. V. Santi, and T. J. Schwan, *ibid.*, 10, 304 (1967).
- (12) B. R. Baker and J. L. Kelley, *ibid.*, 11, 682 (1968).
- (13) B. R. Baker and J. L. Kelley, ibid., 13, 461 (1970).
- (14) B. R. Baker and M. Kawazu, *ibid.*, 10, 311 (1967).
- (15) B. R. Baker and W. Rzeszotarski, *ibid.*, 10, 1109 (1967).
- (16) B. R. Baker and W. Rzeszotarski, ibid., 11, 639 (1968).
- (17) B. R. Baker and J. L. Kelley, ibid., 14, 812 (1971).
- (18) E. Bresnick and U. B. Thompson, J. Biol. Chem., 240, 3967 (1965).
- (19) D. T. Gish, R. C. Kelley, G. W. Camiener, and W. J. Wechter, J. Med. Chem., 14, 1159 (1971).
- (20) B. R. Baker, P. M. Tanna, and G. D. F. Jackson, J. Pharm. Sci., 54, 987 (1965).
- (21) R. L. Letsinger and K. K. Ogilvie, J. Org. Chem., 32, 296 (1967).
- (22) K. L. Agarwal and M. M. Dhar, Experientia, 21, 432 (1965).
- (23) G. Weiman and H. G. Khorana, J. Amer. Chem. Soc., 84, 4329 (1962).
- (24) K. E. Pfitzner and J. G. Moffatt, ibid., 87, 5661 (1965).
- (25) P. T. Gilham and H. G. Khorana, ibid., 80, 6212 (1958).
- (26) J. P. Horwitz, J. A. Urbanski, and J. Chua, J. Org. Chem., 27, 3300 (1962).
- (27) L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis." Vol. I, Wiley, New York, N. Y., 1967, p 1159.
- (28) S. G. Powell, J. Amer. Chem. Soc., 45, 2708 (1923).
- (29) A. O. Fritton and G. R. Ramage, J. Chem. Soc., 4870 (1962).
- (30) F. J. Bollum and V. R. Potter, J. Biol. Chem., 233, 478 (1958).
- (31) T. R. Breitman, Biochim. Biophys. Acta, 67, 153 (1963).
- (32) S. L. Shapiro, V. A. Parrino, and L. Freedman, J. Amer. Chem. Soc., 81, 3728 (1959).
- (33) D. L. Drain, J. G. Howes, and H. W. R. Williams, British Patent 984304 (1965); Chem. Abstr., 62, 14572c (1965).
- (34) J. Lohmann, Chem. Ber., 24, 2634 (1891).
- (35) D. G. Doherty, R. Shapiro, and W. T. Burnett, Jr., J. Amer. Chem. Soc., 79, 5667 (1957).
- (36) J. S. Buck, ibid., 55, 2593 (1933).
- (37) S. L. Shapiro, E. S. Issacs, V. Vanduseo, and L. Freedman, J. Med. Pharm. Chem., 5, 793 (1962).
- (38) L. C. Clark, Jr., F. Benington, and R. D. Morin, J. Med. Chem., 8, 353 (1965).
- (39) E. M. Schultz and J. M. Sprague (to Merck and Co., Inc.), U. S. Patent 3255241 (1966); Chem. Abstr., 65, 5408b (1966).
- (40) C. H. Fawcett, R. L. Wain, and F. Wightman, Ann. Appl. Biol., 43, 342 (1955).
- (41) C. Hansch, R. M. Muir, T. Fujita, P. P. Maloney, F. Geiger, and M. Streich, J. Amer. Chem. Soc., 85, 2817 (1963).
- (42) S. S. Nametkin, N. N. Mel'mikov, and K. S. Bokarev, Dokl. Akad. Nauk SSSR, 68, 77 (1949); Chem. Abstr., 44, 1936i (1950).
- (43) J. Toothill, R. L. Wain, and F. Wightman, Ann. Appl. Biol., 44, 547 (1956).
- (44) Wm. J. Kenny, J. A. Walsh, and D. A. Davenport, J. Amer. Chem. Soc., 83, 4019 (1961).
- (45) R. Pummerer, Chem. Ber., 42, 2275 (1909).
- (46) L. Werner (to Ciba Pharmaceutical Products, Inc.), U. S. Patent 3024248 (1962); Chem. Abstr., 57, 8581g (1962).
- (47) R. Shibata and M. Okuyama, J. Chem. Soc. Jap., 57, 26 (1936); Chem. Abstr., 30, 52147 (1936).
- (48) G. M. Obsengendlev and Yu. E. Gerasimenko, Zh. Obshch. Khim., 27, 3214 (1957); Chem. Abstr., 52, 9051f (1958).
- (49) C. H. Fawcett, D. M. Spencer, and D. L. Wain, Ann. Appl. Biol., 45, 158 (1958).
- (50) H. E. Unguade and E. F. Orwoll, J. Amer. Chem. Soc., 65, 1736 (1943).
- (51) F. Hoffman-LaRoche and Co. A.-G., German Patent 613125 (1935); Chem. Abstr., 29, 5601⁹ (1935).
- (52) H. Sobotka and J. Austin, J. Amer. Chem. Soc., 74, 3813 (1952).

[§] In this way less than 2% thymidine can be detected.

[#]Starting *m*-benzyloxyphenol is labile to rearrangement under certain conditions (see ref 29). The product was characterized by nmr to ascertain that it had not suffered a similar fate.